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Summary 
 

The single-step Bayesian regression (SS-BR) model benefits from a wider class of variable 

selection models, while this is a limitation with the single-step GBLUP model. We used an 

extended SS-BR model for multi-breed multi-trait analysis that includes extra polygenic effects on 

all genotyped and non-genotyped individuals as well as the external EPDs. This model was applied 

to the database of the International Genetic Solutions (IGS), an international collaboration between 

12 beef breed associations with the largest multi-breed beef database in the world (over 16 million 

registered animals). The objective of this study was to investigate the impact of using two sources 

of external information: 1) external breed contrast adjustments reported by the US Meat Animal 

Research Center and 2) external EPDs derived from non-IGS partner breeds, on the predictions of 

multi-breed multi-trait SS-BR genomic-enhanced EPDs (GE-EPDs). In general, the correlations 

between SS-BR GE-EPDs with the conventional pedigree-based EPDs were higher for the SS-BR 

model without using any external information. However, the correlations were lower between GE-

EPDs and the external EPDs in the model without using any external information. These results 

show that the markers can capture the breed differences in the multi-breed SS-BR and no external 

breed contrast adjustment is needed. However, the incorporation of the external EPDs are required 

to leverage the additional information that can be obtained from externally generated EPDs. 
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Introduction: 

 

Genomic profiles provide additional information about the genetic merit of a DNA tested animal 

and increase the accuracy of EPDs, which are called Genomic Enhanced EPD or GE-EPDs, of 

selection candidates. The single-step Bayesian regression model (SS-BR; Fernando et al., 2014) 

benefits from a wider class of variable selection models, while this is a limitation with the single-

step GBLUP model. Saatchi et al. (2014) detected a few large-effect quantitative trait loci (QTL) 

that explain the majority of genetic variations for most growth and carcass traits in ten US beef 

cattle breeds. International Genetic Solutions (IGS), a progressive international collaboration 

between 12 breed associations across the world (www.internationalgeneticsolutions.com), 

decided to implement the multi-breed SS-BR model for their international genetic evaluation to 

take advantage of this knowledge.  
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The objective of this study was to investigate the impact of using two sources of external 

information on the predictions of GE-EPDs from multi-breed multi-trait SS-BR models. The two 

sources of external information were: 1) The breed contrast estimates reported by the US Meat 

Animal Research Center (USMARC), 2) The external EPDs for animals that have EPDs outside 

the IGS genetic evaluation system. The first is predicated on the hypothesis that the breed 

differences are more accurately estimated from data collected at research centers than the field 

collected data. The second, external EPDs, are incorporated to leverage the additional information 

that can be obtained from externally generated EPDs (Quaas & Zhang, 2006).  

 

Materials and Methods 
 

Animals and Data 

A total of 16,784,173 animals from 12 collaborating beef breed associations with pedigree 

information were available in the IGS database at the time of study. The total number of individuals 

with own records on birth weight (BW), carcass weight (CW) ribeye area (REA) and ultrasonic 

ribeye area (UREA), were 9,673,144; 63,456; 56,559 and 438,913; respectively. The total number 

of genotyped animals were 78,854; which were genotyped with different SNP arrays and marker 

densities, mostly with the GGP-LD (GeneSeek; Lincoln, NE) and Illumina BovineSNP50 

(Illumina; San Diego, CA). All genotypes were filtered and then imputed to 52,662 high quality 

markers according to the Saatchi, et al. (2014). The imputation was performed within each breed 

using FImpute software (Salgolzaei, et al. 2014). After imputation only 2250 highly influential 

markers (known as MSRP markers, Saatchi & Garrick, 2014) were used for analysis. Animals that 

were more than 3 generations removed from an animal with at least one phenotype were removed, 

leaving 11,598,426 animals for the analysis. 

 

Statistical Model 

The single-step Bayesian regression method (Fernando et al., 2014; Fernando et al., 2016) was 

extended for multi-trait analysis using BayesC with 𝜋 = 0 (Cheng et al., 2017) and to include extra 

polygenic effects on all genotyped and non-genotyped individuals. The model equation was: 

 

𝐲 =  𝐗𝛃 + 𝐙𝐌𝛂 + 𝐔𝛜 + 𝐖 + 𝐞, 

 

where 𝐲 is the phenotypic vector for both genotyped and non-genotyped individuals for all 4 traits, 

𝐗 is the design matrix for contemporary group fix effects, 𝛃 is the contemporary group fix effects 

for both genotyped and non-genotyped individuals for all 4 traits, 𝐙 is the design matrix, 𝐌 =

[
𝐌n̂

𝐌g
], where 𝐌g is the matrix of marker covariate for genotyped animals and 𝐌𝐧̂ = 𝐀𝑛𝑔𝐀𝑔𝑔

−1𝐌n, 

representing imputed marker covariates for non-genotyped animals derived from genotyped 

relatives for all 4 traits, 𝛂 is the marker effect, 𝛜 is the imputation residual, and 𝐔 is the design 

matrix allocating records to breeding values of non-genotyped animals for all 4 traits. The 𝐖 is 

the design matrix and  is the extra polygenic effects for all 4 traits.  

The priors for 𝛃 are flat priors. The priors for marker effects 𝛂 is α|𝜎𝑔α
2 ∼  𝑁(0, (𝑐 ∗

(∑ 2𝑝𝑚𝑞𝑚
2250
𝑚=1 )−1)𝜎𝑔

2) where 𝜎𝑔
2 is the additive genetic variance, the prior for 𝛜 is 𝛜|𝜎𝑔ϵ

2 ∼

 𝑁(0, 𝑐 ∗ ( 𝐀11 − 𝐀12𝐀22
−1𝐀21)𝜎𝑔

2), for  is |𝜎𝑔
2 ∼  𝑁(0, 𝑐𝐴𝜎𝑔

2), 𝑐 = 0.5 and (𝜎𝑔
2|𝜈𝑔, 𝑆𝑔

2) ∼

𝜈𝑔𝑆𝑔
2𝜒𝜈𝑔

2 . The prior for 𝑒𝑖 is 𝑒𝑖|𝜎𝑒
2 ∼𝑖𝑖𝑑  𝑁(0, 𝜎𝑒

2) and (𝜎𝑒
2|𝜈𝑒, 𝑆𝑒

2) ∼ 𝜈𝑒𝑆𝑒
2𝜒𝜈𝑒

2 . 



In the first analysis, the raw phenotypes were used without using any external 

information. While in the second analysis, an animal’s phenotypes for BW, CW and REA traits 

were pre-adjusted based on the USMARC breed contrasts and the animal’s breed composition 

(estimated from the pedigree). The external EPDs for animals with available EPDs from breed 

associations external to IGS were used in the second analysis using a modified method of Quaas 

and Zhang (2006), which does not require the inversion of the relationship matrix among the 

individuals with the external EPDs. This modification allowed us to include more animals 

with the external EPDs in the analysis (21,874 animals in total). 

 

The analyses were performed using the BOLT software (Golden et al., 2016). The results were 

compared to the EPDs reported by the American Simmental Association 

(www.simmental.org/site/index.php/multi-breed-evaluation) from the conventional pedigree-

based multi-breed national genetic evaluation in spring 2017, which include external EPDs. 

 

Results and Discussions 

 
The Pearson correlations between the GE-EPDs calculated from SS-BR models with and without 

external information (breed contrasts adjustment and external EPDs) and the conventional 

pedigree-based EPDs are shown in Table 1. The regression coefficient of SS-BR GE-EPDs on 

conventional EPDs are also shown in the Table 1. In general, the correlations are higher for the 

SS-BR model without breed adjustment and external EPDs in comparison to the SS-BR model 

without using external information (except for rib eye area, where the correlations were lower). 

Similar results were also observed for the genetic trends obtained from the SS-BR model without 

using any external information, which were more similar to the genetic trends reported from the 

IGS conventional genetic evaluation (results are not shown). However, the regression 

coefficients are much lower in the SS-BR model without using external information, reflecting a 

higher shrinkage in GE-EPDs in this model. These results show that in the multi-breed SS-BR 

model, the markers can capture the breed differences and no external breed contrast adjustment 

is needed. 

 

 Table 1 – The overall correlations and regression coefficients between SS-BR GE-EPDs and the 

conventional pedigree-based EPDs. 

  With external 

information 

Without external 

information 

Trait  r b r b 

Birth weight All 0.95 1.10 0.97 0.97 

 Genotyped 0.95 1.00 0.95 0.92 

 Non-genotyped 0.95 1.10 0.97 0.97 

Carcass weight All 0.64 0.62 0.70 0.38 

 Genotyped 0.48 0.56 0.48 0.34 

 Non-genotyped 0.64 0.62 0.70 0.38 

Ribeye area All 0.62 0.92 0.56 0.40 

 Genotyped 0.65 0.86 0.53 0.45 

 Non-genotyped 0.62 0.92 0.56 0.40 

 

http://www.simmental.org/site/index.php/multi-breed-evaluation)


As expected, the correlations were lower for genotyped animals versus the non-

genotyped animals because deviations exist in GE-EPDs compare the expected pedigree-based 

EPDs by adding the extra DNA information and accounting for the Mendelian sampling in the 

genotyped animals. 

 

Table 2 - The correlations and regression coefficients between SS-BR GE-EPDs and external 

EPDs by different levels of GE-EPDs accuracies. 

  With external information Without external information 

Trait Accuracy N r b N r b 

Birth weight .40-.49 1889 0.84 0.94 1506 0.53 0.50 

 .90-.99 38 1.00 0.97 38 0.92 0.79 

Carcass weight .30-.39 590 0.94 1.01 656 0.37 0.19 

 .60-.69 24 0.95 0.90 31 0.39 0.32 

Ribeye area .30-.39 365 0.92 1.02 456 0.31 0.18 

 .60-.69 41 0.98 0.96 15 0.51 0.27 

 

The Pearson correlations and coefficient regressions between the SS-BR GE-EPDs and 

external EPDs are shown in Table 2. It shows that the correlations and regressions are much 

lower for the SS-BR model without using the external information. These results demonstrate 

that the external EPDs could be used in the SS-BR to improve the GE-EPD predictions using the 

independent information available on such animals.  
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