ASA

Commercial producers have limited tools for replacement heifer selection. Now, they can access tools seedstock folks have to predict cow longevity and ability to produce calves with built-in value.      

Beef Magazine.com      |     

Commercial producers have limited tools for replacement heifer selection. Now, they can access tools seedstock folks have to predict cow longevity and ability to produce calves with built-in value. 

A large portion of our industry has been forced to sit idly by while a small subset of beef producers take advantage of ever-increasing improvements in genetic selection tools.  Recent advances have provided seedstock producers with a whole host of EPDs, indexes, and DNA technologies that allow them to make a more rapid change than ever before.  While this brings some unsettled waters to navigate, we all know we have to continue to up our game if we are going to compete with other animal protein sources that have huge biological and efficiency advantages.

True, commercial cow/calf operators are beneficiaries of this progress when they make savvy bull decisions.  But still, that commercial rancher is left without a meaningful metric to make selection decisions on replacement females.  At the ground level, producers are using much the same approach that has been used for generations to populate and grow their cow herd.  We are surrounded by major technological advancements, from our phone to our tractor, and yet heifer selection is often left to the strengths and weaknesses of the eyeball test.

Multiple organizations have stepped in to try and offset this commercial disadvantage.  Firms have developed various DNA tests that give an added glimpse to the genetic prowess of females.  This has been a huge step forward, however, this glimpse can be a bit too superficial and vague and what is more leaves out two major components of genetic awareness – pedigree knowledge and individual performance.

 

Continue reading here.

By Wade Shafer, Ph.D., ASA Executive Vice President     |     

Editor’s Note: This article was originally published in March 2008 issue of the SimTalk
written by Wade Shafer, Ph.D. Drs. Lauren Hyde and Jackie Atkins provided updates for reprint.     |     

A beef cow’s job is not an easy one. She is expected to conceive at slightly over one year of age, to calve by the time she is two, and rebreed shortly after that while weaning a healthy, viable calf. Furthermore, we demand that she consistently repeats this cycle for the rest of her life — one stumble and, hasta la vista, baby!

To be sure, producers are best served when the cow successfully performs her task for many years, as the longer her productive life, the more profitable she is to the enterprise. Is there anything that can be done to help her out? Certainly, there are environmental factors we can manage that will give her a leg up. For example, by providing adequate nutrition and a proper vaccination regimen and mating her to easy-calving sires (particularly when she is young), we increase the odds of her success. While a cow’s environment has a substantial impact on her reproductive performance, her genetic makeup can too. This article explores the genetics of female reproduction and offers suggestions on how to improve the reproductive performance of your cow herd via genetics.

Crossbreeding

The obvious place to start a discussion about the genetics of female reproduction is the factor that far and away has the greatest affect on it — crossbreeding. It has long been recognized that crossbreeding enhances virtually all aspects of reproductive performance. Studies too numerous to list here have established the reproductive superiority of crossbred over straightbred cows.

In one of an abundance of studies with similar findings, scientists at the Meat Animal Research Center (MARC) concluded that two-breed rotational cross cows produced 20% more calves over their lifetime than straightbreds due to the favorable impact of heterosis on dam fertility/longevity and calf survivability brought about by the improved calving and mothering ability of the dam (Cundiff et al., 1992). Furthermore, they estimated that when mated to a bull of another breed, the two-breed cross cows would wean 36% more weight over their lifespan than straightbred cows raising straightbred calves. The dramatic increase is attributable to the positive influence of heterosis on reproduction and production in the dam and well as increased growth and survivability in their calves.

Given the overwhelming evidence of the crossbred cow’s reproductive supremacy and the fact that reproduction is a major piece of the profitability puzzle (by most accounts exceeding all other functions by a wide margin of relative importance), it is difficult to conceive of a situation where a commercial enterprise would not benefit financially from a crossbred cow herd.

Are we implying that selecting animals within a breed for reproductive performance is not a worthwhile endeavor? No! Reproductive progress can be made via selection (which we will address later); however, it would take years of intense selection within a breed to yield the kind of improvement that can be achieved in one fell swoop by simply crossbreeding.

Therefore, crossbreeding makes a logical cornerstone in any effort to enhance cow herd reproductive performance. With crossbreeding as the foundation, the selection of superior animals of multiple breeds as inputs to the crossbreeding system can be considered a supplemental means of further boosting reproductive function; however, identifying reproductively superior animals has its challenges, as we will explain.

Indirect Selection

Because the assessment of a cow’s reproductive performance is generally determined later in her life, it seems logical to look for early indicators to hasten the process. For example, it is a commonly held belief that females with a propensity toward fatness will excel reproductively.

Though research has shown that increased fatness, to a point, is strongly and favorably associated with reproductive performance on a phenotypic scale, the few attempts to assess the relationship on a genetic level shows an unfavorable, though weak, relationship. Using data from the Red Angus Association of America (RAAA), researchers at Colorado State University (CSU; Beckman et al., 2006) derived genetic correlations ranging from -.12 to -.22 between body condition at various ages and Stayability (by industry convention, the probability of a cow remaining in the herd through 6 years of age). At the American Simmental Association (ASA), we have found a correlation of -.19 between an animal’s genetic propensity for backfat in the feedlot and their inherent Stayability. We (ASA) have also calculated a -.11 genetic correlation between backfat and heifer pregnancy (the likelihood of a heifer being pregnant at the end of the breeding season) using RAAA data.

Admittedly, these unfavorable correlations between fatness and reproduction may seem illogical. We have all seen a higher proportion of thin cows open at pregnancy test time. Keep in mind, however, that the aforementioned correlations are genetic correlations. The relationships we actually observe, i.e., phenotypic correlations, are influenced by a combination of underlying environmental and genetic relationships. There is little question that females within a herd lucky enough to experience an environment for increased body condition (e.g., extra energy intake) are likely to have better reproductive performance than their herd mates. Furthermore, this strong and positive environmental relationship between fat and reproduction apparently overwhelms what appears to be a slightly negative genetic relationship — yielding the strong, favorable phenotypic relationship we typically observe.

Frankly, there is not enough evidence about the genetic relationship between fatness and reproductive function to make recommendations based on it at this time; however, though it may fly in the face of conventional wisdom, it appears that selecting “easy-fleshing” genotypes will not gain us ground reproductively.

Scrotal circumference has been considered as a predictor of female reproductive performance. Though the preponderance of evidence indicates a strong to a moderately favorable relationship between scrotal circumference and age at puberty in related females, research is less clear on the relationship between scrotal circumference and subsequent measures of reproduction. In a study based on a large population involving several breeds at the MARC, Martinez-Velazquez et al. (2003) found a slightly unfavorable (.15) relationship between scrotal circumference and age at first calving and no relationship between scrotal circumference and first pregnancy, first calving, and first weaning rates. Their conclusion was that selection on scrotal circumference would not be effective in improving female reproduction. These findings are in agreement with some studies and contradicted by others. For those interested, Martinez-Velazquez et al. (2003) provides an excellent literature review on the subject. Given the conflicting evidence, it may not be advisable to base selection decisions on scrotal circumference with the intent of enhancing maternal reproduction.

As for other traits that may be related to reproductive function, Rogers et al. (2004) found that increased levels of milk EPD increased the risk of females being culled. This finding is consistent with ASA data showing an unfavorable (-.15) genetic correlation between milk and Stayability. Other ASA genetic correlations of note are -.26, .40, and -.19 between Stayability and mature weight, maternal calving ease and marbling, respectively. Based on these findings, we would expect females that are inherently lower milking, smaller at maturity, easier calving, and less marbled to stay in the herd longer; however, none of these relationships is strong enough to make a sizable impact on Stayability by selecting for them. Furthermore, other than mature weight, because of its strong relationship to early growth, determining the genetic level of a young heifer for these traits by simply observing them (which is what most commercial producers are limited to) is not possible. Therefore, a different tactic will be required if we wish to improve reproductive performance via selection. Namely, select for it directly — which, as we will point out, is not a trivial task.

Direct Selection

A well-entrenched view of both commercial and seedstock producers is that the “cows left standing” after culling on the components of reproduction (e.g., pregnancy status and calf loss) are genetically superior. By extension, it is presumed that a great deal of progress in reproduction is made through rigorous culling and the retention of heifers out of dams making it to advanced ages. Though this may seem like a reasonable eduction, it is generally not the case.

Unfortunately, little genetic headway is made by simply culling cows that do not achieve reproductive thresholds. This may seem counterintuitive. Why wouldn’t getting rid of the offenders improve your genetics for reproduction? The main reason lies in the fact that measures of reproduction tend to be lowly heritable (estimates typically run between 5-20%). And, with lowly heritable traits, an animal’s own performance is not a good indicator of its genetic level for the trait. Therefore, many open culls may be genetically above average or even superior for reproduction. By the same token, several cows kept because they are bred may be genetically inferior for it — certainly not an outcome that will yield much improvement.

So, how do we directly select for reproduction? Because a cow’s reproductive performance is expressed later in life, and even then it only provides a very cloudy picture of her genetic merit, are we relegated to making little to no selection progress for reproduction? Heck, no! We can clear the clouds with reproductive EPDs.

Though EPDs always provide the best estimate of an animal’s genetic merit, they are especially valuable when applied to low-heritability traits. This is because, when an animal’s own record is a poor indicator of its genetic makeup, gathering information
on its relatives is the only means we currently have of getting a clear picture of the animal.

You may ask yourself, “If an animal’s own performance does not tell us much, what can be gained by records on its relatives?” It is not that a single relative record brings much to the mix (obviously it adds even less than the animal’s own record); it is that there is strength in numbers — an animal can have many relatives with records, but only one record on itself. Through the use of EPDs, we utilize information on all of an animal’s relatives and, in doing so, chip away at the cloud with each record that flows in.

With a low-heritability trait expressed later in life, like reproductive function, the cloud clears slowly — but it will clear. In fact, if an animal has enough progeny records, we can see its genetic merit for reproduction as clear as a bell.

Fortunately, the seedstock industry now has EPDs that are, for the most part, direct measures of reproductive function: Stayability (STAY) and heifer pregnancy (HP). Researchers at CSU developed STAY (Snelling et al., 1995) and HP (Doyle et al., 2000) EPDs, and the RAAA implemented them into the association’s national cattle evaluation a few years later. Since its development, STAY has undergone several revisions. Most recently, the ASA released the industry’s first multi-breed STAY evaluation, which incorporated genomic data in a single-step random regression model.

Though STAY and HP have potential shortcomings (e.g., seedstock breeders’ culling practices are probably not in step with the commercial industry’s, and breed association culling records tend to be sketchy), they are the most effective selection tools available for improving reproductive function. What’s more, based on computer simulation efforts by retired USDA scientist M.D. MacNeil, the economic impact of Stayability when selecting a sire for female replacement is nearly twice that of the next closest trait, while the relative importance of heifer pregnancy is on par with the most important carcass or growth traits (personal communication) — so these reproductive EPDs certainly warrant a great deal of attention in the selection process.

Most commercial producers do not have the luxury of using STAY or HP EPDs to select replacement females; however, if you select sires with superior EPDs in these areas, the reproductive function of your cow herd is likely to improve over time. Given their relationship to Stayability, you may also gain some reproductive ground by selecting sires with lower milk, smaller mature size and better maternal calving ease EPDs. Another option to consider for commercial producers is the commercial option of the American Simmental’s Total Herd Enrollment. The commercial option predicts EPDs on commercial females and coupled with the Cow Herd DNA Roundup provides genomically enhanced EPDs to commercial females.

Summary

In closing, we must reiterate that crossbreeding needs to be at the center of any effort to improve the reproductive function of your cow herd. The dramatic impact of heterosis on reproductive performance is crystal clear — no herd should be without it! Though reproductive improvement through selection is possible, it is generally limited to utilizing reproductive EPDs when selecting your herd sires. By combining crossbreeding with the selection of superior sires you will position your enterprise to excel in the most vital area of beef cattle production — cow herd reproduction.

Literature Cited

Beckman, D. W., S. E. Speidel, B. W. Brigham, D. J. Garrick, and R. M. Enns. 2006. Genetic parameters for stayability and body condition score in beef females.

Proc. West. Sect. Am. Soc. An. Sci. 57:93-95. Cundiff, L. V., Nuiiez-Dorniguez, R., Dickerson, G. E., Gregory, K. E., and R.

M. Koch. 1992. Heterosis for lifetime production in Hereford, Angus, Shorthorn, and crossbred cows. Journal of Animal Science. 70:2397-2410.

Doyle, S. P., Golden, B. L., Green, R. D., and J. S. Brinks. 2000. Additive genetic parameter estimates for heifer pregnancy and subsequent reproduction in Angus females. Journal of Animal Science. 78:2091-2098.

Martinez-Velazquez G., K. E. Gregory, G. L. Bennett and L. D.

Van Vleck. 2003. Genetic relationships between scrotal circumference and female reproductive traits. Journal of Animal Science. 81:395-401.

Rogers, P. L., Gaskins, C. T., Johnson, K. A., and M. D. MacNeil. 2004. Evaluating longevity of composite beef females using survival analysis techniques. Journal of Animal Science.
82:860-866.

Snelling, W. M, Golden, B. L., and R. M. Bourdon. 1995. Within-herd genetic analyses of stayability of beef females.

Journal of Animal Science. 73:993-1001.

Discontinued MBV Reports

Those of you who have submitted DNA samples for EPD incorporation have been receiving reports with your animals' EPDs before and after incorporation (MBV reports) for the last several years.  We have now discontinued MBV reports. 
 
The major reason for ceasing the reports is that, as we make our transition to high frequency (e.g., weekly) runs with our new genetic evaluation software (BOLT), these reports will no longer be relevant.  Because we will be adding all the new phenotypes and genotypes that have been submitted since the prior week, the changes between runs will be due to a myriad of reasons (e.g., new phenotypes on an animal or related animals, new DNA on an animal or related animals, etc.), rather than change being limited to DNA results on the animal.  Because of this, it won't be unusual for animals that have not had information submitted directly on them to change.   
 
For those of you who are interested in comparing the before and after EPDs for animals you submit DNA on, we suggest that you save your animals' EPDs prior to DNA submission.  This can be done by logging onto your Herdbook account and 1) clicking the "Herd Mgmt" tab, 2) selecting the group you would like EPDs on, 3) clicking on the "EPD Report" tab and 4) hitting the "Generate Report" tab.  This procedure will generate a spreadsheet of EPDs that you can download and save for comparing old with new EPDs.  Another option for obtaining animals' EPDs prior to blending is to email ASA's DNA department with the request.      

American Royal

 

NATIONAL SHOWS  AMERICAN ROYAL

Simmental Junior Heifers

Superintendent:
Aaron Owen, Bois D’Arc, MO

Judge:
TBA
Showmanship Judge:
TBA

American Royal Website

Junior's Schedule

Tuesday, September 12th
Entry and Ownership Deadline

Wednesday, October 25th
7:00 a.m. Earliest Move-In

Thursday, October 26th
8:00 a.m. Arrival Deadline
5:00 p.m. McCullough Fitting Clinic- Hale Arena

Friday, October 27th
2:30 p.m. Junior Heifer Showmanship- East Side Hale Arena
Saturday, October 28th
5:00 p.m. Simmental PTP Bull Show- East Side Hale Arena

Sunday, October 29th, 2017
8:00 a.m. Simmental Junior Heifer Show followed by PTP Female Show- East Side Hale Arena
12:00 p.m. Supreme Champion Junior Heifer Show- Hale Arena

Simmental Open Shows:

Sat.,October. 28
5:00 p.m. Simmental Progress through Performance Bull Show– East Side Hale Arena 

Sun., October. 29
8:00 a.m. Simmental Progress through Performance Female Show (immediately following the Simmental Junior Heifer Show)

East Side Hale Arena
Percentage Females
Purebred Females
Group Classes
Cattle are released immediately following the show

 

 

 

ASA Ring of Champions 2017-2018

Only the four major shows involved in the national show rotation

are eligible for the

“ASA RING OF CHAMPIONS 2017-2018”.

Shows include:  

2017 American Royal

2017 North American

2018 National Western

2018 Fort Worth Stock Show

Award Divisions:

• Purebred Simmental Heifer of the Year

• Purebred Simmental Bull of the Year

• Percentage Simmental Heifer of the Year

• Percentage Simmental Bull of the Year

Visit:  www.simmental.org/ringofchamps to print information.

 

 

 

ASA Programs

ASA Programs

SPC Important Dates

Click on the event to view details.

Cow Herd DNA Roundup

 CHR is a research project with GeneSeek

60% OFF Genomic Testing (50K) On Females For A Limited Time Only.  A Win For Breeders and A Win For the Breed!

In this time of rapid technological advancement, animal breeding is entering a new era. As demonstrated in the pig and dairy industries, gathering and incorporating vast amounts of genomic data into the genetic evaluation accelerates progress. Holsteins, for example, have genotyped 1.6 million cattle and subsequently doubled their genetic improvement rate.

Female genotypes are rare and valuable, especially to predict maternal traits such as stayability and maternal calving ease. Furthermore, genotyping entire herds improves genomic evaluations by reducing bias created when only the best cattle are genotyped. Therefore, gathering massive amounts of genotypes on entire cow herds will significantly improve the genomic predictions and rate of genetic progress.

Considering these facts, the ASA Board of Trustees passed an innovative resolution to invest in the future of genomic technology for ASA members. In August, the Board of Trustees voted to offer a $20 genomic profile (50K including parentage) to members who test their entire cow herd (a $30 savings). Wait, there’s more! Breeders who submit cow weights with either body conditions scores or hip heights receive an additional $5 off per test — an amazing price of $15/sample for something breeders currently pay $50 per test for. This offer is for a limited time only — samples must be submitted to ASA by December 15, 2018. Don’t wait until next December 2018 to join this movement, there is a capped budget for this project so breeders need to submit samples early to ensure these discounts.

Benefits to participating members:

1. Genomic testing is most valuable in cattle with low accuracy EPDs. Typically, all cows have low accuracy EPDs because they don’t have enough calves in a lifetime to gain enough records to reach moderate or high accuracy EPDs. Therefore, adding genomic results to EPDs of the cow herd will markedly improve the accuracy of their EPDs allowing breeders to make better decisions.

2. At $20, if someone has 100 cows, they can test the entire herd for $2,000. Furthermore, if they submit cow weights, they would only pay $1,500. Based upon ASA’s current fee structure, the same allotment of funds would only be enough to GE-EPD 30-40 head and the whole herd would not benefit from the testing.

3. Parentage included — current error in parentage is estimated at 7%. Large scale testing will reveal and help correct errors in the pedigrees resulting in better EPD predictions.

4. Parentage markers will be in the database making future parentage testing easier.

5. In the future, maintaining a fully tested herd will only require testing yearling heifers.

As this is part of research and development..... not a definite timeline for reporting results.  "Breeders will be notified when DNA samples from their herd have been processed by the ASA and sent to the laboratory to begin DNA testing

6. Additional trait testing optional in conjunction with the CHR.

Benefits to the ASA and all members:

1. Harnesses the membership’s collective strength to bargain a better price with DNA companies.

2. Feeds large amounts of genotypes into BOLT and single step genetic evaluation, which improves the predictive power of our genetic evaluation.

3. Continues development of new and better DNA markers for even more accurate future tests.

 

Rules and restrictions:

• $20/test for ASA members who submit DNA on their entire cow herd (with a 10% window).

• $15/test if members also electronically submit mature cow weights and either body condition scores or hip heights on the herd. There is a finite budget for the reduced price so act fast.

• The above prices are a one-time opportunity. Samples must be received at the ASA by December 15, 2018 to qualify.

• Cows must be recorded in the ASA database.

• As this is part of research and development, the timeline for results is uncertain. Breeders enrolled in this program acknowledge there is not a definite timeline for reporting results.

• Breeders will be billed after results are completed.

• Donor cows and bulls do not qualify for this project.

• Breeders may submit DNA on heifers but they must recognize the uncertain timeline for results. If you are working your cattle this fall, consider joining the Cow Herd DNA Roundup. Jump on board and be a part of this maternal revolution. Contact Leoma Wells or Jackie Atkins for more information:

406-587-4531 or This email address is being protected from spambots. You need JavaScript enabled to view it..

 
 

$20 Genomic test including parentage     |     www.simmental.org/chr     |

 
You've come to expect ASA to leverage all its resources to provide the industry with the best prices and most robust science.  The Cowherd DNA Roundup is a perfect example of a breed association that works for you.  
 
Breeders who submit a DNA sample on their entire cowherd can get genomically enhanced EPDs and parentage for $20/test.  Like how that sounds?  There's more!  Breeders who submit cow weights with either body conditions scores or hip heights get an additional $5 off per test - an amazing price of $15/sample.

This project marks a major investment from the ASA towards research and development.  The $15 test is only available for the first 15,000 samples with phenotypes submitted.  There is no estimate of when the results will be available on samples submitted.  Donor cows and bulls do not qualify.  

Leoma Wells, ASA's DNA and Total Herd Enrollment (THE) Specialist, will transition from DNA Services to ASA's point person for the Cowherd DNA Roundup project. When asked about the transition, Wells says, "I am excited and grateful to be a part of this revolutionary project. It combines two of my favorite areas, DNA and data collection on females. The wheels are turning and I absolutely can't wait to get started and smash the goals we have set."  In September, ASA will welcome Carolyn Wild to the DNA department to help with the daily DNA services.  

Contact Leoma Wells or Jackie Atkins for more information 406-587-4531.

The Canadian Simmental Association (CSA) will be hosting the 2017 Simmental Federation of Americas meeting. It will be held in conjunction with the National Simmental Show during the Canadian Western Agribition, November 20-25th, in Regina, Saskatchewan. US Simmental breeders and affiliated industries are invited to attend. A block of rooms is available until October 20, 2017, at the Double Tree by Hilton Regina. Registration is at a discounted rate before September 15. Go to www.simmental.com to register and find the schedule of events.

Page 3 of 15

                      

Herdbook How To's

Let us know how we are doing

 

 

Top